

Welcome to Dpowers’ documentation!

Source code:
https://github.com/dp0s/Dpowers

Introduction

The Dpowers are a collection of python tools for common automization tasks, such as:

	Send / receive events from keyboard, mouse and other devices.

	Wait for a certain key combination or sequence to trigger your own code.

	Observe and interact with windows on your screen.

	Display notifications, dialog boxes and tray icons.

	Access the clipboard content.

	Edit images.

The Dpowers package bundles existing open-source projects into a unified python interface. It provides a high level of flexibility due to the following characteristics:

	Adaptable. Each job can be performed by several backends of your choice. Switch between backends dynamically in one line of code.

	Modular. Each sub-package (a.k.a. sub-power) can be used independently.

	Easy to extend. You can add your own power and/or your own backend without touching existing files.

	Cross-platform by nature. (More backends need to be added and tested though to be fully cross-platform.)

Benefits:

	Save time by learning one command syntax to access several backends.

	Combine the advantages of two or more backends into a single tool.

	Future safe. If one backend becomes out-dated, replace it by a more recent one. No need to change your code.

	Short and intuitive commands are prefered to type less.

	Some higher level classes are included to enhance the backend’s functionality. (Such as Dpowers.Win and Dpowers.KeyWaiter)

Requirements

	python 3.6 or later

	Currently only tested on apt based Linux systems (Debian, Ubuntu, Linux Mint).

Preperation

	Installation and Dependencies

	Importing and Adapting
	Step 1: Import

	Step 2: Adapt

	Alternative: autoadapt

Quickstart

	Overview of adaptable objects
	Adaptors

	AdaptiveClasses

	Basic Examples
	Display a tray icon with customized menu

	Define a key sequence to trigger a function

	Define a combined key / button sequence as trigger

	Advanced Examples
	Click on a window to paste its properties to the clipboard

	Launch the browser and simultaneously redirect key presses

Reference (still incomplete)

	Adaptors
	Adaptor

	keyb (KeyboardAdaptor)

	mouse (MouseAdaptor)

	clip (ClipboardAdaptor)

	ntfy (NotificationAdaptor)

	dlg (DialogAdaptor)

	hook (HookAdaptor)

	Adaptive Classes
	AdaptiveClass

	Win / Win.Search

	Icon

	TriggerManager

	KeyWaiter

Indices and tables

	Index

Installation and Dependencies

Install from PyPI:

$ pip install -U Dpowers

(This will automatically install the package ‘Dhelpers’ as a
necessary dependency. All of Dhelpers’ functions and classes can be used
independently for your own projects, i.e. without the Dpowers package
installed, via pip install -U Dhelpers.)

After first installation, you should try:

>>> import Dpowers

This should never raise an exception, otherwise please file a bug report.

Note

The pip install command does NOT install any of the backend
dependencies. You need to manually install the dependencies for the backends you want to
use.

The following prints a list of all dependencies for all backends on your
system (given example is for Debian/Ubuntu/Linux Mint):

>>> import Dpowers
>>> print(Dpowers.Adaptor.install_instructions())
sudo apt install python3-tk xclip xdotool yad zenity xsel wmctrl
pip install -U pynput pillow eyed3 wand pystray

Execute the output lines in your shell and you should be able to use all backends.

Importing and Adapting

Step 1: Import

This is done as usual. Examples:

import Dpowers
from Dpowers import keyb, ntfy

By default the imported objects are unadapted, i.e. there’s no backend chosen yet. If you try using them, you’ll get an exception:

>>> from Dpowers import keyb
>>> keyb.tap("a")
AdaptionError: No backend chosen for following adaptor:
<Dpowers.events.sending.keybpower.KeyboardAdaptor object at 0x7fedf46e00b8 with creation_name 'keyb', primary instance of group 'default', backend: None>

Step 2: Adapt

For each object, choose a backend by calling its adapt() method. If you call it without any arguments, the default backend for your platform will be chosen depending on your system:

>>> from Dpowers import keyb
>>> keyb.adapt() # pynput is the default backend in this example
<module 'Dpowers.events.sending.keybpower.adapt_pynput'>
>>> keyb.adapt("pynput") # another way to select pynput
<module 'Dpowers.events.sending.keybpower.adapt_pynput'>
>>> keyb.adapt("evdev") # manually chose another backend
<module 'Dpowers.events.sending.keybpower.adapt_evdev'>
>>> keyb.tap("a") # check if it works
>>> a

Note

Calling the adapt method will import the corresponding backend module (if it hasn’t been imported before). It raises an exception if the backend is not supported on your system or the backend’s dependencies could not be found.

Alternative: autoadapt

You can perform the two steps (import and adapt) in only one line:

import Dpowers.autoadapt
which is equivalent to
import Dpowers
Dpowers.activate_autoadapt()

This will try to adapt ALL adaptable objects to their default backend if
possible, and prints a warning for each exception encountered. The list of
default backends is defined in Dpowers .default_backends.py [https://github.com/dp0s/Dpowers/tree/master/Dlib/Dpowers/default_backends.py]

Alternatively, the wildcard import also activates autoadapt:

>>> from Dpowers import *
>>> keyb.tap("a") # check if it works
>>> a

A list of all names imported this way:

>>> Dpowers.__all__
['autoadapt', 'keyb', 'mouse', 'ntfy', 'dlg', 'hook', 'Icon', 'Win', 'sendwait', 'nfsendwait', 'clip', 'Dfuncs', 'events', 'KeyWaiter', 'TriggerManager', 'Image', 'mp3tag', 'sleep', 'sound', 'hotkeys', 'launch', 'Layout', 'Dpowers', 'Dhelpers']

Overview of adaptable objects

An adaptable object can be coupled to a specific backend by calling its
adapt() method. There are two kinds of adaptable objects
within Dpowers - Adaptors and AdaptiveClasses.

Adaptors

	Dpowers.keyb: Send key events.

	Dpowers.mouse: Send mouse events.

	Dpowers.hook: Receive events from keyboard, mouse and other devices.

	Dpowers.clip: Access and modify the clipboard content.

	Dpowers.ntfy: Post notifcations on the desktop.

	Dpowers.dlg: Show dialog boxes and wait for user confirmation.

An Adaptor is an instance of the common baseclass Dpowers.Adaptor.
Each Adaptor provides a collection of methods which automatically call the
corresponding backend’s functions.

AdaptiveClasses

	Dpowers.Win: Find and manipulate windows on your screen.

	Dpowers.Icon: Create and display tray icons, including context menu.

	Dpowers.Image: Edit and assemble image files.

	Dpowers.KeyWaiter: Collect key events until a condition is fullfilled.

	Dpowers.TriggerManager: Define event patterns (such as key or
button sequences) to trigger your own functions.

An AdaptiveClass is a subclass of the common baseclass
Dpowers.AdaptiveClass. All instances created by this class will share
the same backend.

Basic Examples

Display a tray icon with customized menu

Reference:
Dpowers.ntfy
Dpowers.Icon

from Dpowers import autoadapt, Icon, ntfy
myicon = Icon()

@myicon.additem
def my_custom_menu_item():
 ntfy("You clicked the custom menu item.")

myicon.start()

Define a key sequence to trigger a function

Reference:
Dpowers.TriggerManager

from Dpowers import TriggerManager, sleep
TriggerManager.adapt()
MyTriggers = TriggerManager().hook_keys()

@MyTriggers.sequence("ctrl d d_rls")
def myfunction():
 print("Control + d was pressed")

MyTriggers.start()
sleep(30)
MyTriggers.stop()

Define a combined key / button sequence as trigger

Reference:
Dpowers.TriggerManager

from Dpowers import TriggerManager
TriggerManager.adapt(keys="evdev", buttons="pynput")

CombinedTriggers = TriggerManager(timeout = None)
Keys = CombinedTriggers.hook_keys()
Buttons = CombinedTriggers.hook_buttons()

@Keys.sequence("ctrl d")
def myfunction():
 print("Control + d was pressed")

@Buttons.sequence("mleft")
def myfunction2():
 print("Left mouse button was pressed.")

@CombinedTriggers.sequence("Ctrl mleft")
def myfunction3():
 print("Ctrl + left mouse button was pressed")

CombinedTriggers.start()
this will run in background until CombinedTriggers.stop()

Advanced Examples

Click on a window to paste its properties to the clipboard

Reference:
Dpowers.ntfy
Dpowers.dlg
Dpowers.clip
Dpowers.Win

from Dpowers import autoadapt, ntfy, Win, dlg, clip

def display_win_info():
 ntfy("Click on a window", 3)

 x = Win(loc="SELECT").all_info()
 winprops = x[:3] + ((x[1], x[2]),) + x[3:]

 show = [str(winprops[0]) + " [ID]", str(winprops[1]) + " [TITLE]",
 str(winprops[2]) + " [CLASS]", str(winprops[3]),
 str(winprops[4]) + " [PID]",
 str(winprops[5]) + " [GEOMETRY] (x,y,width,height)"]

 ret = dlg.choose(show, default=3, title="Window information",
 text="Save to clipboard:", width=700)

 if ret is not None:
 for i in range(len(show)):
 if ret == show[i]:
 clip.fill(winprops[i], notify=True)
 break

display_win_info()

This function is pre-defined in the module Dpowers.Dfuncs.py [https://github.com/dp0s/Dpowers/tree/master/Dlib/Dpowers/Dfuncs.py]:

from Dpowers import autoadapt, Dfuncs
Dfuncs.display_win_info()

Launch the browser and simultaneously redirect key presses

Reference:
Dpowers.launch
Dpowers.Win
Dpowers.Win.wait_num_change
Dpowers.KeyWaiter

from Dpowers import autoadapt, launch, Win, KeyWaiter, ntfy

def firefox_launch():

 with KeyWaiter(100, 15, endevents="Return", capture=True) as address:
 FirefoxWindows = Win("^Mozilla Firefox$") # the ^ and $
 # mark that we want an exact title match (regular expression)
 launch("firefox", "-P", "default", check=True, check_err=False)
 newWin = FirefoxWindows.wait_num_change(+1, timeout=10)

 if not newWin: return
 if newWin.num != 1: raise ValueError
 newWin.activate()

 code = address.exitcode
 if code not in ("endevent", "__exit__"):
 raise ValueError(f"Wrong exitcode: {code}")
 address.reinject(delay=1)

Adaptors

	
class Dpowers.Adaptor(main_info=None, *, group='default', _primary_name=False, **method_infos)

	Abstract baseclass for all of Dpower’s Adaption classes.

	
__init__(main_info=None, *, group='default', _primary_name=False, **method_infos)

	Usually, you do not need to create Adaptor instances yourself as
a default instance is already available for each subclass (see
below).

	Parameters:

	
	main_info (str) – Name of the backend to be used, passed on to
adapt().

	group (str) – Name of the instance group to which the new
instance will belong.

	_primary_name – Used only for internal documentation purposes. It
allows specifiying the primary/default instance for each instance group.

	method_infos – Passed on to adapt().

If the main_info and/or method_infos parameter is given, the new
instance is immediately adapted using its adapt() method.

If neither main_info nor method_infos is specified (default),
and Adpator.autoadapt_active is True,
choose the default backend according to the instance group and
Dpowers.default_backends.py [https://github.com/dp0s/Dpowers/tree/master/Dlib/Dpowers/default_backends.py].

Otherwise an unadapted instance is created.

	
adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)

	Choose the backend for this Adaptor instance. If neither
main_info nor method_infos is specified, the
default backend for this instance group is selected, as defined in
the module Dpowers.default_backends.py [https://github.com/dp0s/Dpowers/tree/master/Dlib/Dpowers/default_backends.py].

	Parameters:

	
	main_info (str) – Name of the backend to be used.

	raise_error (bool) – If set to False, exceptions caused
during backend import are suppressed. A warning is printed instead.

	require_backend (bool) – If set to True (default), a
ValueError will be raised if no default backend could be
found.

	method_infos – Explanation to be added .

	Returns:

	
	The module object of the backend’s adapt_*.py file.

	False if an exception occurs but is suppressed (see
parameters raise_error and require_backend).

	Raises:

	
	Dpowers.AdaptionError if there is an exception during
importing the backend.

	ValueError if used without arguments and no default backend
could be found (you can disable this via require_backend=False).

keyb (KeyboardAdaptor)

	
Dpowers.keyb

	Default instance of KeyboardAdaptor class.

How to import:

from Dpowers import keyb

choose the default backend for your system:
keyb.adapt()

alternatively, choose one of the following backends:
keyb.adapt('evdev')
keyb.adapt('pynput')
keyb.adapt('xdotool_bash')

How to install dependencies for available backends:

>>> print(keyb.install_instructions())
pip install -U pynput
sudo apt install xdotool

	
class Dpowers.KeyboardAdaptor(main_info=None, *, group='default', _primary_name=False, **method_infos)

	Send key events to the system via the chosen backend.

See Dpowers.events.keybutton_names.py [https://github.com/dp0s/Dpowers/tree/master/Dlib/Dpowers/events/keybutton_names.py] for a list of allowed key names and key groups.
Most of the defined keys can be called by more than one name equivalently.
Simply pass one of the key’s names as a string to the methods defined below.

For some backends (such as evdev) it might be neccessary to manually
specify the layout of the keyboard currently used via
the set_layout() method.

Subclass of Dpowers.Adaptor.

	
adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)

	Choose the backend for this instance. See Adaptor.adapt().

	
default_delay = 0

	Class attribute. Default time (in milliseconds) to wait between sending several keys in a row. You can set a custom value to this attribute for the whole class or for a single instance.

	
default_duration = 1

	Class attribute. Default time (in milliseconds) to wait between sending press and release event of the same key. You can set a custom value to this attribute for the whole class or for a single instance.

	
send(string, auto_rls=True, delay=None)

	Convenience method to send several kind of key patterns in one
command. It integrates the functionality of tap(), comb()
and text().

	Parameters:

	
	string (str) – Content to be sent, format see below.

	auto_rls (bool) – If True, send press and release events for
all keys specified inside < >. If False, normal key names
are
interpreted as press events and you must attach _rls to a key
name to send the corresponding release event.

	delay (int) – Time (in milliseconds) to wait between tapping
keys. Defaults to default_delay.

The string parameter will be parsed from left to right according to
the following rules:

	There are two special characters: < and >.
All content between them will be interpreted as key
names (as if called by the tap() method):

keyb.send("<return>") # is equivalent to
keyb.tap("return")

	Everything outside of a < > block will be sent literally using
the text() method:

keyb.send("normal text input..") # is equivalent to
keyb.text("normal text input..")

	Use <key1+key2> to send key combinations:

keyb.send("<ctrl+s>") # is equivalent to
keyb.comb("ctrl","s") # is equivalent to
keyb.send("<ctrl s s_rls ctrl_rls>", auto_rls=False)

	Chain keys and texts as in the following examples:

keyb.send("<home>hello world<return end>") # equivalent to
keyb.tap("home","h","e","l","l","o"," ","w","o","r","l","d",
"return", "end")

keyb.send("<key1 key2 key3>") # equivalent to
keyb.send("<key1><key2><key3>")

keyb.send("<shift+home backspace>this line was deleted")
is equivalent to
keyb.comb("shift","home")
keyb.tap("backspace")
keyb.text("this line was deleted")

	If not paired, < and > are interpreted literally.

	Use <><something> to send literal <something> as text output.

	
tap(key, *keys, delay=None, duration=None, repeat=1)

	Simulate a key tap (i.e. send a press event followed by a release
event of the same key), or multiple key taps in a row.

	Parameters:

	
	key (str) – Name of the (first) key to be sent.

	keys (str) – Further names of keys to be sent in sequence.

	delay (int) – Time (in milliseconds) to wait after tapping a key.
Defaults to default_delay.

	duration (int) – Time (in milliseconds) to wait between each press
and release event. Defaults to default_duration.

	repeat – Number of times this sequence should be repeated.

Examples:

keyb.tap("a")
keyb.tap(1)
keyb.tap("esc")
keyb.tap("f9")

	
press(key, *keys, delay=None, translate_names=True)

	Send key press event(s) to the system. You need to manually send
the corresponding release event(s) afterwards.

	Parameters:

	See tap().

	
rls(key, *keys, delay=None)

	Send key release event(s) to the system.

	Parameters:

	See tap().

	
comb(key1, key2, *keys, delay=None, duration=None)

	Simulates a key combination, such as Control+S or Shift+Alt+F5.
Sends all the press events first and then the release events in
reverse order.

	Parameters:

	
	key1 (str) – The is the name of the first key to be pressed (and
hence the last to be released.)

	key2 (str) – The name of the second key in the combination.

	keys (str) – Further key names.

	delay (int) – Time (in milliseconds) to wait between
pressing/releasing the sequence of keys. Defaults to
default_delay.

	duration (int) – Time (in milliseconds) to wait between sending
the press and release event of the final key. Defaults to
default_duration.

Examples:

keyb.comb("ctrl","s")
keyb.comb("shift","alt","f5")

	
custom_text_method = True

	Default value for parameter custom of method text().

	
text(text, delay=None, custom=None, **kwargs)

	Send a plain text string to the system as if the user would type it.

	Parameters:

	
	text (str) – Any text you want to send. Depending on the backend,
not all symbols might be supported.

	delay (int) – Time (in milliseconds) to wait between sending
single characters. Defaults to default_delay.

	custom (bool) – If set to True, prefer the backend’s special text
method if implemented. Otherwise use tap() for sending
single characters via the backend’s press/rls methods.

	kwargs – Custom keyword arguments to pass to the backend’s
text method.

	
property layout

	Return the currently used keyboard layout for this instance. Use
set_layout() to change it manually.

	
set_layout(name, make_default=False, backend_layout=None, use_shifted=None)

	Manually set the effective keyboard layout and
translate the key codes from the backend accordingly. This is e.g.
necessary for the evdev backend to make sure that the correct keys
are sent to the system.

	Parameters:

	
	name (str) – Name of the keyboard layout you use. This is usually a
two character abbreviation, such as ‘de’ or ‘us’. A list of
available layouts can be found in the folder
Dhelpers.KeyboardLayouts.layouts_imported_from_xkb [https://github.com/dp0s/Dpowers/tree/master/Dlib/Dhelpers/KeyboardLayouts/layouts_imported_from_xkb].

	make_default (bool) – If set to True, all other instances of
KeyboardAdaptor with the same backend as this instance will
use this layout by default. Raises an exception if the backend
for this instance has not been chosen yet.

	backend_layout (str) – Manually set the assumed backend
layout. Normally this is set by the backend, so don’t use this
parameter unless you know what you are doing.

	use_shifted (bool) – Whether to use manualy key shifting when
sending keys. Normally this is set by the backend, so don’t use this
parameter unless you know what you are doing.

Example for a German keyboard:

>>> from Dpowers import keyb
>>> keyb.adapt("evdev")
<module 'Dpowers.events.sending.keybpower.adapt_evdev'>
>>> keyb.layout # returns default layout for evdev backend
us
>>> keyb.tap("[") # sents the wrong key on a German keyboard:
>>> ü
>>> # change to German layout & set as default for evdev backend:
>>> keyb.set_layout("de", make_default=True)
>>> keyb.tap("[") # now the correct key is sent:
>>> [

	
property key

	This object allows accessing Dpowers’ internal key objects and key
groups as defined in the module Dpowers.events.keybutton_names.py [https://github.com/dp0s/Dpowers/tree/master/Dlib/Dpowers/events/keybutton_names.py]. Find a key object by calling it’s name:

>>> keyb.key("a")
<Dpowers.events.keybutton_classes.NamedKey object at 0x7f8bd3fea450 with standard name 'a'>
>>> keyb.key("ctrl")
<Dpowers.events.keybutton_classes.NamedKey object at 0x7f8bd3ff2ba0 with standard name 'CtrlL'>
>>> keyb.key(1)
<Dpowers.events.keybutton_classes.NamedKey object at 0x7f8bd3ff0080 with standard name '1'>
>>> # check if two names belong to the same key object:
>>> keyb.key("ctrl") is keyb.key("leftcontrol")
True

You can find key groups via the .group attribute and check if a
key belongs to it:

>>> keyb.key.group.arrow_keys
[<Dpowers.events.keybutton_classes.NamedKey object at 0x7f8bd3ff3650 with standard name 'up'>, <Dpowers.events.keybutton_classes.NamedKey object at 0x7f8bd3ff3620 with standard name 'down'>, <Dpowers.events.keybutton_classes.NamedKey object at 0x7f8bd3ff3740 with standard name 'left'>, <Dpowers.events.keybutton_classes.NamedKey object at 0x7f8bd3ff37a0 with standard name 'right'>]
>>> "up" in keyb.key.group.arrow_keys
True
>>> 0 in keyb.key.group.arrow_keys
False
>>> 0 in keyb.key.group.digits
True

	
class Dpowers.KeyboardAdaptor.AdaptiveClass

	A baseclass to create your own AdaptiveClasses. See Dpowers.AdaptiveClass.

mouse (MouseAdaptor)

	
Dpowers.mouse

	Default instance of MouseAdaptor class.

How to import:

from Dpowers import mouse

choose the default backend for your system:
mouse.adapt()

alternatively, choose one of the following backends:
mouse.adapt('evdev')
mouse.adapt('pynput')

How to install dependencies for available backends:

>>> print(mouse.install_instructions())
pip install -U pynput

	
class Dpowers.MouseAdaptor(main_info=None, *, group='default', _primary_name=False, **method_infos)

	Subclass of Dpowers.Adaptor.

	
adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)

	Choose the backend for this instance. See Adaptor.adapt().

	
default_delay = 0

	Class attribute. Default time (in milliseconds) to wait between sending several buttons in a row. You can set a custom value to this attribute for the whole class or for a single instance.

	
default_duration = 1

	Class attribute. Default time (in milliseconds) to wait between sending press and release event of the same button. You can set a custom value to this attribute for the whole class or for a single instance.

	
class Dpowers.MouseAdaptor.AdaptiveClass

	A baseclass to create your own AdaptiveClasses. See Dpowers.AdaptiveClass.

clip (ClipboardAdaptor)

Examples

	Click on a window to paste its properties to the clipboard

	
Dpowers.clip

	Default instance of ClipboardAdaptor class.

How to import:

from Dpowers import clip

choose the default backend for your system:
clip.adapt()

alternatively, choose one of the following backends:
clip.adapt('xclip_bash')
clip.adapt('xsel_bash')

How to install dependencies for available backends:

>>> print(clip.install_instructions())
sudo apt install xsel xclip

	
class Dpowers.ClipboardAdaptor(main_info=None, *, group='default', _primary_name=False, **method_infos)

	Subclass of Dpowers.Adaptor.

	
adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)

	Choose the backend for this instance. See Adaptor.adapt().

	
get(selection=0) → str

	Retrieves the content

	Parameters:

	selection – The selection to be retrieved. Defaults to 0,
i.e. the standard clipboard.

	Returns str:

	retrieved content

	
class Dpowers.ClipboardAdaptor.AdaptiveClass

	A baseclass to create your own AdaptiveClasses. See Dpowers.AdaptiveClass.

ntfy (NotificationAdaptor)

Examples

	Display a tray icon with customized menu

	Click on a window to paste its properties to the clipboard

	
Dpowers.ntfy

	Default instance of NotificationAdaptor class.

How to import:

from Dpowers import ntfy

choose the default backend for your system:
ntfy.adapt()

alternatively, choose one of the following backends:
ntfy.adapt('notify_send_bash')

	
class Dpowers.NotificationAdaptor(main_info=None, *, group='default', _primary_name=False, **method_infos)

	Subclass of Dpowers.Adaptor.

	
adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)

	Choose the backend for this instance. See Adaptor.adapt().

	
class Dpowers.NotificationAdaptor.AdaptiveClass

	A baseclass to create your own AdaptiveClasses. See Dpowers.AdaptiveClass.

dlg (DialogAdaptor)

Examples

	Click on a window to paste its properties to the clipboard

	
Dpowers.dlg

	Default instance of DialogAdaptor class.

How to import:

from Dpowers import dlg

choose the default backend for your system:
dlg.adapt()

alternatively, choose one of the following backends:
dlg.adapt('tkinter')
dlg.adapt('zenity_bash')

How to install dependencies for available backends:

>>> print(dlg.install_instructions())
sudo apt install python3-tk zenity

	
class Dpowers.DialogAdaptor(main_info=None, *, group='default', _primary_name=False, **method_infos)

	Subclass of Dpowers.Adaptor.

	
adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)

	Choose the backend for this instance. See Adaptor.adapt().

	
date(selected=None, **kwargs)

	selected_date must be of form (dd,mm,yyyy). returns the same
format.

	
class Dpowers.DialogAdaptor.AdaptiveClass

	A baseclass to create your own AdaptiveClasses. See Dpowers.AdaptiveClass.

hook (HookAdaptor)

	
Dpowers.hook

	Default instance of HookAdaptor class.

How to import:

from Dpowers import hook

choose the default backend for your system:
hook.adapt()

alternatively, choose one of the following backends:
hook.adapt('evdev')
hook.adapt('pynput')

How to install dependencies for available backends:

>>> print(hook.install_instructions())
pip install -U pynput

	
class Dpowers.HookAdaptor(main_info=None, *, group='default', _primary_name=False, **method_infos)

	Subclass of Dpowers.Adaptor.

	
adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)

	Choose the backend for this instance. See Adaptor.adapt().

	
class Dpowers.HookAdaptor.AdaptiveClass

	A baseclass to create your own AdaptiveClasses. See Dpowers.AdaptiveClass.

Adaptive Classes

	
class Dpowers.AdaptiveClass

	
	
adaptor

	Class attribute. This is an instance of a subclass of
Dpowers.Adaptor. It determines the backends available for
this AdaptiveClass and
is shared among all created instances. This Adaptor instance is used
internally to access all backend specific functions. Usually you shouldn’t
use this attribute, but prefer the AdaptiveClass’ methods.

	
classmethod adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)

	Changes the backend for all instances of this AdaptiveClass,
including already created instances (unless
adapt_instance() was used).

For parameters see Dpowers.Adaptor.adapt().

	
adapt_instance(main_info=None, *, raise_error=True, require_backend=True, **method_infos)

	Changes the backend for this instance only.

For parameters see Dpowers.Adaptor.adapt().

Win / Win.Search

Examples

	Click on a window to paste its properties to the clipboard

	Launch the browser and simultaneously redirect key presses

	
class Dpowers.Win(title_or_ID=None, wcls=None, *, pid=None, loc=None, at_least_one=False, limit=None, visible=None)

	Subclass of Dpowers.AdaptiveClass.

Associated Adaptor class: Dpowers.WindowAdaptor

How to import:

from Dpowers import Win

choose the default backend for your system:
Win.adapt()

alternatively, choose one of the following backends:
Win.adapt('xtools_bash')

How to install dependencies for available backends:

>>> print(Win.install_instructions())
sudo apt install wmctrl xdotool

An object of this class represents one or more graphical windows of
your operating system.

When a new instance of this class is created, a search is
performed to find all existing windows matching the given parameters.
Each window is identified by a unique system-wide identification number (
ID). The matching IDs are saved in ascending order as a static list. Use
the IDs() method to see them. All methods below will operate on
this list of initially found windows.

Two Win() objects are considered identical if their list
of IDs() are identical.

	
classmethod adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)

	Choose the backend for this class. See AdaptiveClass.adapt(). For parameters see Dpowers.Adaptor.adapt().

	
__init__(title_or_ID=None, wcls=None, *, pid=None, loc=None, at_least_one=False, limit=None, visible=None)

	
	Parameters:

	
	title_or_ID (str, int) –
	A string is interpreted as the title to search for. The string
can be contained anywhere in the window’s title to
be considered a match.

	An integer is interpreted as a window ID. Specifying this
directly will skip the search and all other parameters are hence
ignored.

	wcls (str) – Window class to search for. This must be an exact
match.

	pid (int) – Process ID of the window to search for.

	loc (tuple) – Specify screen coordinates (x,*y*) for this
parameter to retrieve the top-most window at that location.
Specifying this will ignore all other parameters.

	at_least_one (bool) – If set to True, check that at least one
matching window has been found.

	limit (int) – Maximum number of windows to include into the
window object. If more matching windows exist, only the ones with
the lowest IDs will be included.

	visible (bool) – If set to True, only visible windows will be
considered.

	Raises:

	WindowNotFoundError – If at_least_one is True and no
matching window was found.

In order to find the currently active (i.e. topmost) window,
simply call this class without parameters:

active_window = Win()

Several different parameters can be
passed at once to narrow down the search. A window must
fullfill all specified parameters to be a match:

dpowers_doc_win = Win('Dpowers documentation', 'Navigator.firefox')
searches for windows with
'Dpowers documentation' contained in title
AND
window class is equal to 'Navigator.firefox' (Firefox browser)

In place of passing a single value for the parameters ID, title,
wcls or pid, it is possible to pass a
list (or tuple or set) of allowed values instead, which will search
for a wider scope of windows:

dpowers_browser_win = Win('Dpowers documentation',
 ('Navigator.firefox','chromium-browser.Chromium-browser'))
searches for windows with
'Dpowers documentation' contained in title
AND
(window class is equal to 'Navigator.firefox'
OR window class is equal to 'chromium-browser.Chromium-browser')

In many cases it is desirable to make sure that exactly one
matching window is found for each instance to avoid
confusion. In other cases it might be useful to operate on a
group of windows simultaneously.

Note

If a window was initially found and closed in the meantime,
its ID will still be in the internal list of the Win() object.
This can result in an Exception when trying to interact with a
non-existent window ID. The update() or
remove_non_existing() methods can be used to avoid this
problem.

	
update()

	Re-perform the initial search for matching existing windows and
update this window object’s internal ID list. This removes
non-existing windows and searches for new matches.

	
remove_non_existing()

	Cleanse this window object’s internal ID list by removing those
that do not exist anymore.

	
property num

	Number (int) of windows found to match the given criteria. Equals
zero if there was no match at all.

	
ID()

	Returns the identification number (int) of this window if exactly one match was found. Returns None if no match was found. Raises ValueError if there was more than one matching window.

	
IDs()

	Returns a tuple of length num containing the IDs of all found windows.

	
title()

	Returns the title (str) of this window if exactly one match was found. Returns None if no match was found. Raises ValueError if there was more than one matching window.

	
titles()

	Returns a tuple of length num containing the titles of all found windows. Use titles_gen() to create a generator instead of a tuple.

	
wcls()

	Returns the window class (str) of this window if exactly one match was found. Returns None if no match was found. Raises ValueError if there was more than one matching window.

	
wclasses()

	Returns a tuple of length num containing the window classes of all found windows. Use wclasses_gen() to create a generator instead of a tuple.

	
pid()

	Returns the process ID (int) of this window if exactly one match was found. Returns None if no match was found. Raises ValueError if there was more than one matching window.

	
pids()

	Returns a tuple of length num containing the process IDs of all found windows. Use pids_gen() to create a generator instead of a tuple.

	
classmethod screen_res()

	Returns the screen resolution in pixels as a
tuple (screen_width, screen_height).

	
width()

	Returns the width in pixels (int) of this window if exactly one match was found. Returns None if no match was found. Raises ValueError if there was more than one matching window.

	
widths()

	Returns a tuple of length num containing the widths of all found windows. Use widths_gen() to create a generator instead of a tuple.

	
height()

	Returns the height in pixels (int) of this window if exactly one match was found. Returns None if no match was found. Raises ValueError if there was more than one matching window.

	
heights()

	Returns a tuple of length num containing the heights of all found windows. Use heights_gen() to create a generator instead of a tuple.

	
geometry()

	Returns the 4 border coordinates of this window if exactly one match was found. Returns None if no match was found. Raises ValueError if there was more than one matching window.

The return value is a 4-element tuple containing the window’s
border coordinates as int in pixels as follows: (left, top,
right, bottom) = (Xmin, Ymin, Xmax, Ymax).

	
geometries()

	Returns a tuple of length num containing the geometries of all found windows. Use geometries_gen() to create a generator instead of a tuple.

	
info()

	Returns the 2-element tuple (title(), wcls()) of this window if exactly one match was found. Returns None if no match was found. Raises ValueError if there was more than one matching window.

	
infos()

	Returns a tuple of length num containing the info() tuples of all found windows. Use infos_gen() to create a generator instead of a tuple.

	
all_info()

	Returns the 5-element tuple (ID(), title(), wcls(), pid(), geometry()) of this window if exactly one match was found. Returns None if no match was found. Raises ValueError if there was more than one matching window.

	
all_infos()

	Returns a tuple of length num containing the all_info() tuples of all found windows. Use all_infos_gen() to create a generator instead of a tuple.

	
close(all=False)

	Closes this window.

	Parameters:

	all – If set True, apply this command to all found windows.

	Raises:

	ValueError – If all is False (default) and more than one
window matches.

	
kill(all=False)

	Kill (force close) this window.

	Parameters:

	all – If set True, apply this command to all found windows.

	Raises:

	ValueError – If all is False (default) and more than
one window matches.

	
minimize(all=False)

	Minimize this window.

	Parameters:

	all – If set True, apply this command to all found windows.

	Raises:

	ValueError – If all is False (default) and more than one
window matches.

	
maximize(all=False)

	Maximize this window.

	Parameters:

	all – If set True, apply this command to all found windows.

	Raises:

	ValueError – If all is False (default) and more than one
window matches.

	
max_left(all=False)

	Maximize this window to the left side of the screen.

	Parameters:

	all – If set True, apply this command to all found windows.

	Raises:

	ValueError – If all is False (default) and more than one
window matches.

	
max_right(all=False)

	Maximize this window to the right side of the screen.

	Parameters:

	all – If set True, apply this command to all found windows.

	Raises:

	ValueError – If all is False (default) and more than one
window matches.

	
move(x=-1, y=-1, width=-1, height=-1, all=False)

	Move and resize this window. Specifying -1 for one of the
coordinates will keep the current value (default).

	Parameters:

	
	x (int) – New coordinate of left border.

	y (int) – New cordinate of top border

	width (int) – New width of window.

	height (int) – New hight of window.

	all – If set True, apply this command to all found windows.

	Raises:

	ValueError – If all is False (default) and more than one
window matches.

	
activate(all=False)

	Activates this window.

	Parameters:

	all – If set True, apply this command to all found windows.

	Raises:

	ValueError – If all is False (default) and more than one
window matches.

	
wait_active(timeout=5, pause_when_found=0.05, timestep=0.2)

	Wait until the specified window is active. If several windows
are matching, wait until any of them is active.

	Parameters:

	
	timeout (float) – Seconds to wait before returning anyway.

	pause_when_found (float) – Time to sleep after success.

	timestep (float) – Interval how often the condition is checked.

	Returns:

	
	The Win() object for the active window in case of success.

	False in case of a timeout.

	
wait_not_active(timeout=5, timestep=0.2)

	Same as wait_active(), but reversed. It waits until the
specified window(s) is (are) not active anymore.

	Returns:

	
	True in case of success.

	False in case of a timeout.

	
wait_exist(timeout=5, pause_when_found=0.05, timestep=0.2, min_wincount=1, max_wincount=None)

	Waits until the number of matching windows is between
min_wincount and max_wincount. By default, this means at least
one matching window must exist.

	Parameters:

	
	timeout (float) – Seconds to wait before returning anyway.

	pause_when_found (float) – Time to sleep after success.

	timestep (float) – Interval how often the condition is checked.

	min_wincount (int) – Minimum number of matching windows
necessary to continue.

	max_wincount – Maximum number of matching windows to continue.
If set to None (default), there is no maximum.

	Returns:

	
	The Win() object containing all matching windows in case of success.

	False in case of a timeout.

	
wait_not_exist(timeout=5, timestep=0.2)

	Wrapper for wait_exist() with min_wincount =
max_wincount = 0.

	Returns:

	
	True in case of success.

	False in case of a timeout.

	
wait_num_change(num_change, timeout=5, pause_when_found=0.05, timestep=0.2)

	Wrapper for wait_exist(). Waits until the number of
currently matching windows has changed by num_change (relative to
the initial found number num).

	Parameters:

	num_change (int) – A positive or negative integer.

	Returns:

	
	The Win() object of the newly found window(s) if num_change is positive.

	The Win() object of the closed window(s) if num_change is negative. (These do not exist anymore.)

	False in case of a timeout.

Useful when opening a new window if other windows of the same class
are already existing, see for example:
Launch the browser and simultaneously redirect key presses.

	
wait_exist_activate(timeout=5, timestep=0.2)

	Wait until at least one matching window exists and activate it immediately.

	Returns:

	
	The Win() object for the found window.

	False in case of timeout or if activate failed.

	
class Dpowers.Win.Search

	Subclass of Dpowers.windowpower.windowobjects.WindowSearch, using
the same adaptor instance (and thus the same backend) as Dpowers.Win.

Icon

Examples

	Display a tray icon with customized menu

	
class Dpowers.Icon

	Subclass of Dpowers.AdaptiveClass.

Associated Adaptor class: Dpowers.IconAdaptor

How to import:

from Dpowers import Icon

choose the default backend for your system:
Icon.adapt()

alternatively, choose one of the following backends:
Icon.adapt('pystray')
Icon.adapt('yad_bash')

How to install dependencies for available backends:

>>> print(Icon.install_instructions())
pip install -U pillow pystray
sudo apt install yad

	
classmethod adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)

	Choose the backend for this class. See AdaptiveClass.adapt(). For parameters see Dpowers.Adaptor.adapt().

	
menuitem(text=None, func=None)

	Adds a new entry to the icon’s context menu.

	Parameters:

	
	text (str) – Text of the menu entry. If omitted
func.__name__ will be used as text
(underscores are replaced by space).

	func – Function to execute when clicking this menu entry.

	
additem(func)

	A decorator to apply menuitem() directly onto a function.

TriggerManager

Examples

	Define a key sequence to trigger a function

	Define a combined key / button sequence as trigger

	
class Dpowers.TriggerManager(timeout=60, buffer=4)

	Subclass of Dpowers.AdaptiveClass.

Associated Adaptor class: Dpowers.HookAdaptor

How to import:

from Dpowers import TriggerManager

choose the default backend for your system:
TriggerManager.adapt()

alternatively, choose one of the following backends:
TriggerManager.adapt('evdev')
TriggerManager.adapt('pynput')

How to install dependencies for available backends:

>>> print(TriggerManager.install_instructions())
pip install -U pynput

	
classmethod adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)

	Choose the backend for this class. See AdaptiveClass.adapt(). For parameters see Dpowers.Adaptor.adapt().

KeyWaiter

Examples

	Launch the browser and simultaneously redirect key presses

	
class Dpowers.KeyWaiter(*args, eventmap=None, keys=True, buttons=False, press=True, release=False, write_rls=True, join_events=False, **kwargs)

	Subclass of Dpowers.AdaptiveClass.

Associated Adaptor class: Dpowers.HookAdaptor

How to import:

from Dpowers import KeyWaiter

choose the default backend for your system:
KeyWaiter.adapt()

alternatively, choose one of the following backends:
KeyWaiter.adapt('evdev')
KeyWaiter.adapt('pynput')

How to install dependencies for available backends:

>>> print(KeyWaiter.install_instructions())
pip install -U pynput

	
classmethod adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)

	Choose the backend for this class. See AdaptiveClass.adapt(). For parameters see Dpowers.Adaptor.adapt().

Index

 _
 | A
 | C
 | D
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (Dpowers.Adaptor method)

 	(Dpowers.Win method)

A

 	
 	activate() (Dpowers.Win method)

 	adapt() (Dpowers.AdaptiveClass class method)

 	(Dpowers.Adaptor method)

 	(Dpowers.ClipboardAdaptor method)

 	(Dpowers.DialogAdaptor method)

 	(Dpowers.HookAdaptor method)

 	(Dpowers.Icon class method)

 	(Dpowers.KeyboardAdaptor method)

 	(Dpowers.KeyWaiter class method)

 	(Dpowers.MouseAdaptor method)

 	(Dpowers.NotificationAdaptor method)

 	(Dpowers.TriggerManager class method)

 	(Dpowers.Win class method)

 	
 	adapt_instance() (Dpowers.AdaptiveClass method)

 	AdaptiveClass (class in Dpowers)

 	Adaptor (class in Dpowers)

 	adaptor (Dpowers.AdaptiveClass attribute)

 	additem() (Dpowers.Icon method)

 	all_info() (Dpowers.Win method)

 	all_infos() (Dpowers.Win method)

C

 	
 	clip (in module Dpowers)

 	ClipboardAdaptor (class in Dpowers)

 	
 	close() (Dpowers.Win method)

 	comb() (Dpowers.KeyboardAdaptor method)

 	custom_text_method (Dpowers.KeyboardAdaptor attribute)

D

 	
 	date() (Dpowers.DialogAdaptor method)

 	default_delay (Dpowers.KeyboardAdaptor attribute)

 	(Dpowers.MouseAdaptor attribute)

 	default_duration (Dpowers.KeyboardAdaptor attribute)

 	(Dpowers.MouseAdaptor attribute)

 	DialogAdaptor (class in Dpowers)

 	dlg (in module Dpowers)

 	
 	Dpowers.ClipboardAdaptor.AdaptiveClass (built-in class)

 	Dpowers.DialogAdaptor.AdaptiveClass (built-in class)

 	Dpowers.HookAdaptor.AdaptiveClass (built-in class)

 	Dpowers.KeyboardAdaptor.AdaptiveClass (built-in class)

 	Dpowers.MouseAdaptor.AdaptiveClass (built-in class)

 	Dpowers.NotificationAdaptor.AdaptiveClass (built-in class)

 	Dpowers.Win.Search (built-in class)

G

 	
 	geometries() (Dpowers.Win method)

 	
 	geometry() (Dpowers.Win method)

 	get() (Dpowers.ClipboardAdaptor method)

H

 	
 	height() (Dpowers.Win method)

 	heights() (Dpowers.Win method)

 	
 	hook (in module Dpowers)

 	HookAdaptor (class in Dpowers)

I

 	
 	Icon (class in Dpowers)

 	ID() (Dpowers.Win method)

 	
 	IDs() (Dpowers.Win method)

 	info() (Dpowers.Win method)

 	infos() (Dpowers.Win method)

K

 	
 	key (Dpowers.KeyboardAdaptor property)

 	keyb (in module Dpowers)

 	
 	KeyboardAdaptor (class in Dpowers)

 	KeyWaiter (class in Dpowers)

 	kill() (Dpowers.Win method)

L

 	
 	layout (Dpowers.KeyboardAdaptor property)

M

 	
 	max_left() (Dpowers.Win method)

 	max_right() (Dpowers.Win method)

 	maximize() (Dpowers.Win method)

 	menuitem() (Dpowers.Icon method)

 	
 	minimize() (Dpowers.Win method)

 	mouse (in module Dpowers)

 	MouseAdaptor (class in Dpowers)

 	move() (Dpowers.Win method)

N

 	
 	NotificationAdaptor (class in Dpowers)

 	
 	ntfy (in module Dpowers)

 	num (Dpowers.Win property)

P

 	
 	pid() (Dpowers.Win method)

 	
 	pids() (Dpowers.Win method)

 	press() (Dpowers.KeyboardAdaptor method)

R

 	
 	remove_non_existing() (Dpowers.Win method)

 	
 	rls() (Dpowers.KeyboardAdaptor method)

S

 	
 	screen_res() (Dpowers.Win class method)

 	
 	send() (Dpowers.KeyboardAdaptor method)

 	set_layout() (Dpowers.KeyboardAdaptor method)

T

 	
 	tap() (Dpowers.KeyboardAdaptor method)

 	text() (Dpowers.KeyboardAdaptor method)

 	
 	title() (Dpowers.Win method)

 	titles() (Dpowers.Win method)

 	TriggerManager (class in Dpowers)

U

 	
 	update() (Dpowers.Win method)

W

 	
 	wait_active() (Dpowers.Win method)

 	wait_exist() (Dpowers.Win method)

 	wait_exist_activate() (Dpowers.Win method)

 	wait_not_active() (Dpowers.Win method)

 	wait_not_exist() (Dpowers.Win method)

 	
 	wait_num_change() (Dpowers.Win method)

 	wclasses() (Dpowers.Win method)

 	wcls() (Dpowers.Win method)

 	width() (Dpowers.Win method)

 	widths() (Dpowers.Win method)

 	Win (class in Dpowers)

 The Dpowers are a collection of python tools for common automization tasks, such as:

	Send / receive events from keyboard, mouse and other devices.

	Wait for a certain key combination or sequence to trigger your own code.

	Observe and interact with windows on your screen.

	Display notifications, dialog boxes and tray icons.

	Access the clipboard content.

	Edit images.

The Dpowers package bundles existing open-source projects into a unified python interface. It provides a high level of flexibility due to the following characteristics:

	Adaptable. Each job can be performed by several backends of your choice. Switch between backends dynamically in one line of code.

	Modular. Each sub-package (a.k.a. sub-power) can be used independently.

	Easy to extend. You can add your own power and/or your own backend without touching existing files.

	Cross-platform by nature. (More backends need to be added and tested though to be fully cross-platform.)

Benefits:

	Save time by learning one command syntax to access several backends.

	Combine the advantages of two or more backends into a single tool.

	Future safe. If one backend becomes out-dated, replace it by a more recent one. No need to change your code.

	Short and intuitive commands are prefered to type less.

	Some higher level classes are included to enhance the backend’s functionality. (Such as Dpowers.Win and Dpowers.KeyWaiter)

 nav.xhtml

 Table of Contents

 		
 Welcome to Dpowers’ documentation!

 		
 Installation and Dependencies

 		
 Importing and Adapting

 		
 Step 1: Import

 		
 Step 2: Adapt

 		
 Alternative: autoadapt

 		
 Overview of adaptable objects

 		
 Adaptors

 		
 AdaptiveClasses

 		
 Basic Examples

 		
 Display a tray icon with customized menu

 		
 Define a key sequence to trigger a function

 		
 Define a combined key / button sequence as trigger

 		
 Advanced Examples

 		
 Click on a window to paste its properties to the clipboard

 		
 Launch the browser and simultaneously redirect key presses

 		
 Adaptors

 		
 Adaptor

 		
 Adaptor.__init__()

 		
 Adaptor.adapt()

 		
 keyb (KeyboardAdaptor)

 		
 keyb

 		
 KeyboardAdaptor

 		
 mouse (MouseAdaptor)

 		
 mouse

 		
 MouseAdaptor

 		
 clip (ClipboardAdaptor)

 		
 clip

 		
 ClipboardAdaptor

 		
 ntfy (NotificationAdaptor)

 		
 ntfy

 		
 NotificationAdaptor

 		
 dlg (DialogAdaptor)

 		
 dlg

 		
 DialogAdaptor

 		
 hook (HookAdaptor)

 		
 hook

 		
 HookAdaptor

 		
 Adaptive Classes

 		
 AdaptiveClass

 		
 AdaptiveClass.adaptor

 		
 AdaptiveClass.adapt()

 		
 AdaptiveClass.adapt_instance()

 		
 Win / Win.Search

 		
 Win

 		
 Icon

 		
 Icon

 		
 TriggerManager

 		
 TriggerManager

 		
 KeyWaiter

 		
 KeyWaiter

_static/plus.png

_static/file.png

_static/Dicon.png

_static/minus.png

