
Dpowers

dp0s

Apr 25, 2024

PREPERATION

1 Introduction 3

2 Requirements 5
2.1 Installation and Dependencies . 5
2.2 Importing and Adapting . 6
2.3 Overview of adaptable objects . 7
2.4 Basic Examples . 8
2.5 Advanced Examples . 9
2.6 Adaptors . 10
2.7 Adaptive Classes . 19

3 Indices and tables 29

Index 31

i

ii

Dpowers

Source code: https://github.com/dp0s/Dpowers

PREPERATION 1

https://github.com/dp0s/Dpowers

Dpowers

2 PREPERATION

CHAPTER

ONE

INTRODUCTION

The Dpowers are a collection of python tools for common automization tasks, such as:

• Send / receive events from keyboard, mouse and other devices.

• Wait for a certain key combination or sequence to trigger your own code.

• Observe and interact with windows on your screen.

• Display notifications, dialog boxes and tray icons.

• Access the clipboard content.

• Edit images.

The Dpowers package bundles existing open-source projects into a unified python interface. It provides a high level of
flexibility due to the following characteristics:

• Adaptable. Each job can be performed by several backends of your choice. Switch between backends dynamically
in one line of code.

• Modular. Each sub-package (a.k.a. sub-power) can be used independently.

• Easy to extend. You can add your own power and/or your own backend without touching existing files.

• Cross-platform by nature. (More backends need to be added and tested though to be fully cross-platform.)

Benefits:

• Save time by learning one command syntax to access several backends.

• Combine the advantages of two or more backends into a single tool.

• Future safe. If one backend becomes out-dated, replace it by a more recent one. No need to change your code.

• Short and intuitive commands are prefered to type less.

• Some higher level classes are included to enhance the backend’s functionality. (Such as Dpowers.Win and
Dpowers.KeyWaiter)

3

Dpowers

4 Chapter 1. Introduction

CHAPTER

TWO

REQUIREMENTS

• python 3.6 or later

• Currently only tested on apt based Linux systems (Debian, Ubuntu, Linux Mint).

2.1 Installation and Dependencies

Install from PyPI:

$ pip install -U Dpowers

(This will automatically install the package ‘Dhelpers’ as a necessary dependency. All of Dhelpers’ functions and
classes can be used independently for your own projects, i.e. without the Dpowers package installed, via pip install
-U Dhelpers.)

After first installation, you should try:

>>> import Dpowers

This should never raise an exception, otherwise please file a bug report.

Note: The pip install command does NOT install any of the backend dependencies. You need to manually install the
dependencies for the backends you want to use.

The following prints a list of all dependencies for all backends on your system (given example is for De-
bian/Ubuntu/Linux Mint):

>>> import Dpowers
>>> print(Dpowers.Adaptor.install_instructions())
sudo apt install python3-tk xclip xdotool yad zenity xsel wmctrl
pip install -U pynput pillow eyed3 wand pystray

Execute the output lines in your shell and you should be able to use all backends.

5

Dpowers

2.2 Importing and Adapting

2.2.1 Step 1: Import

This is done as usual. Examples:

import Dpowers
from Dpowers import keyb, ntfy

By default the imported objects are unadapted, i.e. there’s no backend chosen yet. If you try using them, you’ll get an
exception:

>>> from Dpowers import keyb
>>> keyb.tap("a")
AdaptionError: No backend chosen for following adaptor:
<Dpowers.events.sending.keybpower.KeyboardAdaptor object at 0x7fedf46e00b8 with creation_
→˓name 'keyb', primary instance of group 'default', backend: None>

2.2.2 Step 2: Adapt

For each object, choose a backend by calling its adapt() method. If you call it without any arguments, the default
backend for your platform will be chosen depending on your system:

>>> from Dpowers import keyb
>>> keyb.adapt() # pynput is the default backend in this example
<module 'Dpowers.events.sending.keybpower.adapt_pynput'>
>>> keyb.adapt("pynput") # another way to select pynput
<module 'Dpowers.events.sending.keybpower.adapt_pynput'>
>>> keyb.adapt("evdev") # manually chose another backend
<module 'Dpowers.events.sending.keybpower.adapt_evdev'>
>>> keyb.tap("a") # check if it works
>>> a

Note: Calling the adapt method will import the corresponding backend module (if it hasn’t been imported before). It
raises an exception if the backend is not supported on your system or the backend’s dependencies could not be found.

2.2.3 Alternative: autoadapt

You can perform the two steps (import and adapt) in only one line:

import Dpowers.autoadapt
which is equivalent to
import Dpowers
Dpowers.activate_autoadapt()

This will try to adapt ALL adaptable objects to their default backend if possible, and prints a warning for each exception
encountered. The list of default backends is defined in Dpowers .default_backends.py

Alternatively, the wildcard import also activates autoadapt:

6 Chapter 2. Requirements

https://github.com/dp0s/Dpowers/tree/master/Dlib/Dpowers/default_backends.py

Dpowers

>>> from Dpowers import *
>>> keyb.tap("a") # check if it works
>>> a

A list of all names imported this way:

>>> Dpowers.__all__
['autoadapt', 'keyb', 'mouse', 'ntfy', 'dlg', 'hook', 'Icon', 'Win', 'sendwait',
→˓'nfsendwait', 'clip', 'Dfuncs', 'events', 'KeyWaiter', 'TriggerManager', 'Image',
→˓'mp3tag', 'sleep', 'sound', 'hotkeys', 'launch', 'Layout', 'Dpowers', 'Dhelpers']

2.3 Overview of adaptable objects

An adaptable object can be coupled to a specific backend by calling its adapt() method. There are two kinds of
adaptable objects within Dpowers - Adaptors and AdaptiveClasses.

2.3.1 Adaptors

• Dpowers.keyb: Send key events.

• Dpowers.mouse: Send mouse events.

• Dpowers.hook : Receive events from keyboard, mouse and other devices.

• Dpowers.clip: Access and modify the clipboard content.

• Dpowers.ntfy: Post notifcations on the desktop.

• Dpowers.dlg: Show dialog boxes and wait for user confirmation.

An Adaptor is an instance of the common baseclass Dpowers.Adaptor. Each Adaptor provides a collection of methods
which automatically call the corresponding backend’s functions.

2.3.2 AdaptiveClasses

• Dpowers.Win: Find and manipulate windows on your screen.

• Dpowers.Icon: Create and display tray icons, including context menu.

• Dpowers.Image: Edit and assemble image files.

• Dpowers.KeyWaiter: Collect key events until a condition is fullfilled.

• Dpowers.TriggerManager: Define event patterns (such as key or button sequences) to trigger your own func-
tions.

An AdaptiveClass is a subclass of the common baseclass Dpowers.AdaptiveClass. All instances created by this
class will share the same backend.

2.3. Overview of adaptable objects 7

Dpowers

2.4 Basic Examples

2.4.1 Display a tray icon with customized menu

Reference: Dpowers.ntfy Dpowers.Icon

from Dpowers import autoadapt, Icon, ntfy
myicon = Icon()

@myicon.additem
def my_custom_menu_item():

ntfy("You clicked the custom menu item.")

myicon.start()

2.4.2 Define a key sequence to trigger a function

Reference: Dpowers.TriggerManager

from Dpowers import TriggerManager, sleep
TriggerManager.adapt()
MyTriggers = TriggerManager().hook_keys()

@MyTriggers.sequence("ctrl d d_rls")
def myfunction():

print("Control + d was pressed")

MyTriggers.start()
sleep(30)
MyTriggers.stop()

2.4.3 Define a combined key / button sequence as trigger

Reference: Dpowers.TriggerManager

from Dpowers import TriggerManager
TriggerManager.adapt(keys="evdev", buttons="pynput")

CombinedTriggers = TriggerManager(timeout = None)
Keys = CombinedTriggers.hook_keys()
Buttons = CombinedTriggers.hook_buttons()

@Keys.sequence("ctrl d")
def myfunction():

print("Control + d was pressed")

@Buttons.sequence("mleft")
def myfunction2():

print("Left mouse button was pressed.")

(continues on next page)

8 Chapter 2. Requirements

Dpowers

(continued from previous page)

@CombinedTriggers.sequence("Ctrl mleft")
def myfunction3():

print("Ctrl + left mouse button was pressed")

CombinedTriggers.start()
this will run in background until CombinedTriggers.stop()

2.5 Advanced Examples

2.5.1 Click on a window to paste its properties to the clipboard

Reference: Dpowers.ntfy Dpowers.dlg Dpowers.clip Dpowers.Win

from Dpowers import autoadapt, ntfy, Win, dlg, clip

def display_win_info():
ntfy("Click on a window", 3)

x = Win(loc="SELECT").all_info()
winprops = x[:3] + ((x[1], x[2]),) + x[3:]

show = [str(winprops[0]) + " [ID]", str(winprops[1]) + " [TITLE]",
str(winprops[2]) + " [CLASS]", str(winprops[3]),
str(winprops[4]) + " [PID]",
str(winprops[5]) + " [GEOMETRY] (x,y,width,height)"]

ret = dlg.choose(show, default=3, title="Window information",
text="Save to clipboard:", width=700)

if ret is not None:
for i in range(len(show)):

if ret == show[i]:
clip.fill(winprops[i], notify=True)
break

display_win_info()

This function is pre-defined in the module Dpowers.Dfuncs.py:

from Dpowers import autoadapt, Dfuncs
Dfuncs.display_win_info()

2.5. Advanced Examples 9

https://github.com/dp0s/Dpowers/tree/master/Dlib/Dpowers/Dfuncs.py

Dpowers

2.5.2 Launch the browser and simultaneously redirect key presses

Reference: Dpowers.launch Dpowers.Win Dpowers.Win.wait_num_change Dpowers.KeyWaiter

from Dpowers import autoadapt, launch, Win, KeyWaiter, ntfy

def firefox_launch():

with KeyWaiter(100, 15, endevents="Return", capture=True) as address:
FirefoxWindows = Win("^Mozilla Firefox$") # the ^ and $
mark that we want an exact title match (regular expression)
launch("firefox", "-P", "default", check=True, check_err=False)
newWin = FirefoxWindows.wait_num_change(+1, timeout=10)

if not newWin: return
if newWin.num != 1: raise ValueError
newWin.activate()

code = address.exitcode
if code not in ("endevent", "__exit__"):

raise ValueError(f"Wrong exitcode: {code}")
address.reinject(delay=1)

2.6 Adaptors

class Dpowers.Adaptor(main_info=None, *, group='default', _primary_name=False, **method_infos)
Abstract baseclass for all of Dpower’s Adaption classes.

__init__(main_info=None, *, group='default', _primary_name=False, **method_infos)
Usually, you do not need to create Adaptor instances yourself as a default instance is already available for
each subclass (see below).

Parameters

• main_info (str) – Name of the backend to be used, passed on to adapt().

• group (str) – Name of the instance group to which the new instance will belong.

• _primary_name – Used only for internal documentation purposes. It allows specifiying
the primary/default instance for each instance group.

• method_infos – Passed on to adapt().

If the main_info and/or method_infos parameter is given, the new instance is immediately adapted using its
adapt() method.

If neither main_info nor method_infos is specified (default), and Adpator.autoadapt_active is True,
choose the default backend according to the instance group and Dpowers.default_backends.py.

Otherwise an unadapted instance is created.

adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)
Choose the backend for this Adaptor instance. If neither main_info nor method_infos is specified, the default
backend for this instance group is selected, as defined in the module Dpowers.default_backends.py.

Parameters

10 Chapter 2. Requirements

https://github.com/dp0s/Dpowers/tree/master/Dlib/Dpowers/default_backends.py
https://github.com/dp0s/Dpowers/tree/master/Dlib/Dpowers/default_backends.py

Dpowers

• main_info (str) – Name of the backend to be used.

• raise_error (bool) – If set to False, exceptions caused during backend import are sup-
pressed. A warning is printed instead.

• require_backend (bool) – If set to True (default), a ValueError will be raised if no
default backend could be found.

• method_infos – Explanation to be added .

Returns

• The module object of the backend’s adapt_*.py file.

• False if an exception occurs but is suppressed (see parameters raise_error and re-
quire_backend).

Raises

• Dpowers.AdaptionError if there is an exception during importing the backend.

• ValueError if used without arguments and no default backend could be found (you can
disable this via require_backend=False).

2.6.1 keyb (KeyboardAdaptor)

Dpowers.keyb

Default instance of KeyboardAdaptor class.

How to import:

from Dpowers import keyb

choose the default backend for your system:
keyb.adapt()

alternatively, choose one of the following backends:
keyb.adapt('evdev')
keyb.adapt('pynput')
keyb.adapt('xdotool_bash')

How to install dependencies for available backends:

>>> print(keyb.install_instructions())
pip install -U pynput
sudo apt install xdotool

class Dpowers.KeyboardAdaptor(main_info=None, *, group='default', _primary_name=False,
**method_infos)

Send key events to the system via the chosen backend.

See Dpowers.events.keybutton_names.py for a list of allowed key names and key groups. Most of the defined
keys can be called by more than one name equivalently. Simply pass one of the key’s names as a string to the
methods defined below.

For some backends (such as evdev) it might be neccessary to manually specify the layout of the keyboard currently
used via the set_layout() method.

Subclass of Dpowers.Adaptor.

2.6. Adaptors 11

https://github.com/dp0s/Dpowers/tree/master/Dlib/Dpowers/events/keybutton_names.py

Dpowers

adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)
Choose the backend for this instance. See Adaptor.adapt().

default_delay = 0

Class attribute. Default time (in milliseconds) to wait between sending several keys in a row. You can set
a custom value to this attribute for the whole class or for a single instance.

default_duration = 1

Class attribute. Default time (in milliseconds) to wait between sending press and release event of the same
key. You can set a custom value to this attribute for the whole class or for a single instance.

send(string, auto_rls=True, delay=None)
Convenience method to send several kind of key patterns in one command. It integrates the functionality
of tap(), comb() and text().

Parameters

• string (str) – Content to be sent, format see below.

• auto_rls (bool) – If True, send press and release events for all keys specified inside <
>. If False, normal key names are interpreted as press events and you must attach _rls
to a key name to send the corresponding release event.

• delay (int) – Time (in milliseconds) to wait between tapping keys. Defaults to
default_delay.

The string parameter will be parsed from left to right according to the following rules:

• There are two special characters: < and >. All content between them will be interpreted as key names
(as if called by the tap() method):

keyb.send("<return>") # is equivalent to
keyb.tap("return")

• Everything outside of a < > block will be sent literally using the text() method:

keyb.send("normal text input..") # is equivalent to
keyb.text("normal text input..")

• Use <key1+key2> to send key combinations:

keyb.send("<ctrl+s>") # is equivalent to
keyb.comb("ctrl","s") # is equivalent to
keyb.send("<ctrl s s_rls ctrl_rls>", auto_rls=False)

• Chain keys and texts as in the following examples:

keyb.send("<home>hello world<return end>") # equivalent to
keyb.tap("home","h","e","l","l","o"," ","w","o","r","l","d",
"return", "end")

keyb.send("<key1 key2 key3>") # equivalent to
keyb.send("<key1><key2><key3>")

keyb.send("<shift+home backspace>this line was deleted")
is equivalent to
keyb.comb("shift","home")

(continues on next page)

12 Chapter 2. Requirements

Dpowers

(continued from previous page)

keyb.tap("backspace")
keyb.text("this line was deleted")

• If not paired, < and > are interpreted literally.

• Use <><something> to send literal <something> as text output.

tap(key, *keys, delay=None, duration=None, repeat=1)
Simulate a key tap (i.e. send a press event followed by a release event of the same key), or multiple key taps
in a row.

Parameters

• key (str) – Name of the (first) key to be sent.

• keys (str) – Further names of keys to be sent in sequence.

• delay (int) – Time (in milliseconds) to wait after tapping a key. Defaults to
default_delay.

• duration (int) – Time (in milliseconds) to wait between each press and release event.
Defaults to default_duration.

• repeat – Number of times this sequence should be repeated.

Examples:

keyb.tap("a")
keyb.tap(1)
keyb.tap("esc")
keyb.tap("f9")

press(key, *keys, delay=None, translate_names=True)
Send key press event(s) to the system. You need to manually send the corresponding release event(s)
afterwards.

Parameters
See tap().

rls(key, *keys, delay=None)
Send key release event(s) to the system.

Parameters
See tap().

comb(key1, key2, *keys, delay=None, duration=None)
Simulates a key combination, such as Control+S or Shift+Alt+F5. Sends all the press events first and then
the release events in reverse order.

Parameters

• key1 (str) – The is the name of the first key to be pressed (and hence the last to be released.)

• key2 (str) – The name of the second key in the combination.

• keys (str) – Further key names.

• delay (int) – Time (in milliseconds) to wait between pressing/releasing the sequence of
keys. Defaults to default_delay.

• duration (int) – Time (in milliseconds) to wait between sending the press and release
event of the final key. Defaults to default_duration.

2.6. Adaptors 13

Dpowers

Examples:

keyb.comb("ctrl","s")
keyb.comb("shift","alt","f5")

custom_text_method = True

Default value for parameter custom of method text().

text(text, delay=None, custom=None, **kwargs)
Send a plain text string to the system as if the user would type it.

Parameters

• text (str) – Any text you want to send. Depending on the backend, not all symbols might
be supported.

• delay (int) – Time (in milliseconds) to wait between sending single characters. Defaults
to default_delay.

• custom (bool) – If set to True, prefer the backend’s special text method if implemented.
Otherwise use tap() for sending single characters via the backend’s press/rls methods.

• kwargs – Custom keyword arguments to pass to the backend’s text method.

property layout

Return the currently used keyboard layout for this instance. Use set_layout() to change it manually.

set_layout(name, make_default=False, backend_layout=None, use_shifted=None)
Manually set the effective keyboard layout and translate the key codes from the backend accordingly. This
is e.g. necessary for the evdev backend to make sure that the correct keys are sent to the system.

Parameters

• name (str) – Name of the keyboard layout you use. This is usually a two character ab-
breviation, such as ‘de’ or ‘us’. A list of available layouts can be found in the folder
Dhelpers.KeyboardLayouts.layouts_imported_from_xkb.

• make_default (bool) – If set to True, all other instances of KeyboardAdaptor with the
same backend as this instance will use this layout by default. Raises an exception if the
backend for this instance has not been chosen yet.

• backend_layout (str) – Manually set the assumed backend layout. Normally this is set
by the backend, so don’t use this parameter unless you know what you are doing.

• use_shifted (bool) – Whether to use manualy key shifting when sending keys. Normally
this is set by the backend, so don’t use this parameter unless you know what you are doing.

Example for a German keyboard:

>>> from Dpowers import keyb
>>> keyb.adapt("evdev")
<module 'Dpowers.events.sending.keybpower.adapt_evdev'>
>>> keyb.layout # returns default layout for evdev backend
us
>>> keyb.tap("[") # sents the wrong key on a German keyboard:
>>> ü
>>> # change to German layout & set as default for evdev backend:
>>> keyb.set_layout("de", make_default=True)
>>> keyb.tap("[") # now the correct key is sent:
>>> [

14 Chapter 2. Requirements

https://github.com/dp0s/Dpowers/tree/master/Dlib/Dhelpers/KeyboardLayouts/layouts_imported_from_xkb

Dpowers

property key

This object allows accessing Dpowers’ internal key objects and key groups as defined in the module Dpow-
ers.events.keybutton_names.py. Find a key object by calling it’s name:

>>> keyb.key("a")
<Dpowers.events.keybutton_classes.NamedKey object at 0x7f8bd3fea450 with␣
→˓standard name 'a'>
>>> keyb.key("ctrl")
<Dpowers.events.keybutton_classes.NamedKey object at 0x7f8bd3ff2ba0 with␣
→˓standard name 'CtrlL'>
>>> keyb.key(1)
<Dpowers.events.keybutton_classes.NamedKey object at 0x7f8bd3ff0080 with␣
→˓standard name '1'>
>>> # check if two names belong to the same key object:
>>> keyb.key("ctrl") is keyb.key("leftcontrol")
True

You can find key groups via the .group attribute and check if a key belongs to it:

>>> keyb.key.group.arrow_keys
[<Dpowers.events.keybutton_classes.NamedKey object at 0x7f8bd3ff3650 with␣
→˓standard name 'up'>, <Dpowers.events.keybutton_classes.NamedKey object at␣
→˓0x7f8bd3ff3620 with standard name 'down'>, <Dpowers.events.keybutton_classes.
→˓NamedKey object at 0x7f8bd3ff3740 with standard name 'left'>, <Dpowers.events.
→˓keybutton_classes.NamedKey object at 0x7f8bd3ff37a0 with standard name 'right
→˓'>]
>>> "up" in keyb.key.group.arrow_keys
True
>>> 0 in keyb.key.group.arrow_keys
False
>>> 0 in keyb.key.group.digits
True

class Dpowers.KeyboardAdaptor.AdaptiveClass

A baseclass to create your own AdaptiveClasses. See Dpowers.AdaptiveClass.

2.6.2 mouse (MouseAdaptor)

Dpowers.mouse

Default instance of MouseAdaptor class.

How to import:

from Dpowers import mouse

choose the default backend for your system:
mouse.adapt()

alternatively, choose one of the following backends:
mouse.adapt('evdev')
mouse.adapt('pynput')

How to install dependencies for available backends:

2.6. Adaptors 15

https://github.com/dp0s/Dpowers/tree/master/Dlib/Dpowers/events/keybutton_names.py
https://github.com/dp0s/Dpowers/tree/master/Dlib/Dpowers/events/keybutton_names.py

Dpowers

>>> print(mouse.install_instructions())
pip install -U pynput

class Dpowers.MouseAdaptor(main_info=None, *, group='default', _primary_name=False, **method_infos)
Subclass of Dpowers.Adaptor.

adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)
Choose the backend for this instance. See Adaptor.adapt().

default_delay = 0

Class attribute. Default time (in milliseconds) to wait between sending several buttons in a row. You can
set a custom value to this attribute for the whole class or for a single instance.

default_duration = 1

Class attribute. Default time (in milliseconds) to wait between sending press and release event of the same
button. You can set a custom value to this attribute for the whole class or for a single instance.

class Dpowers.MouseAdaptor.AdaptiveClass

A baseclass to create your own AdaptiveClasses. See Dpowers.AdaptiveClass.

2.6.3 clip (ClipboardAdaptor)

Examples

• Click on a window to paste its properties to the clipboard

Dpowers.clip

Default instance of ClipboardAdaptor class.

How to import:

from Dpowers import clip

choose the default backend for your system:
clip.adapt()

alternatively, choose one of the following backends:
clip.adapt('xclip_bash')
clip.adapt('xsel_bash')

How to install dependencies for available backends:

>>> print(clip.install_instructions())
sudo apt install xsel xclip

class Dpowers.ClipboardAdaptor(main_info=None, *, group='default', _primary_name=False,
**method_infos)

Subclass of Dpowers.Adaptor.

adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)
Choose the backend for this instance. See Adaptor.adapt().

16 Chapter 2. Requirements

Dpowers

get(selection=0)→ str
Retrieves the content

Parameters
selection – The selection to be retrieved. Defaults to 0, i.e. the standard clipboard.

Returns str
retrieved content

class Dpowers.ClipboardAdaptor.AdaptiveClass

A baseclass to create your own AdaptiveClasses. See Dpowers.AdaptiveClass.

2.6.4 ntfy (NotificationAdaptor)

Examples

• Display a tray icon with customized menu

• Click on a window to paste its properties to the clipboard

Dpowers.ntfy

Default instance of NotificationAdaptor class.

How to import:

from Dpowers import ntfy

choose the default backend for your system:
ntfy.adapt()

alternatively, choose one of the following backends:
ntfy.adapt('notify_send_bash')

class Dpowers.NotificationAdaptor(main_info=None, *, group='default', _primary_name=False,
**method_infos)

Subclass of Dpowers.Adaptor.

adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)
Choose the backend for this instance. See Adaptor.adapt().

class Dpowers.NotificationAdaptor.AdaptiveClass

A baseclass to create your own AdaptiveClasses. See Dpowers.AdaptiveClass.

2.6.5 dlg (DialogAdaptor)

Examples

• Click on a window to paste its properties to the clipboard

2.6. Adaptors 17

Dpowers

Dpowers.dlg

Default instance of DialogAdaptor class.

How to import:

from Dpowers import dlg

choose the default backend for your system:
dlg.adapt()

alternatively, choose one of the following backends:
dlg.adapt('tkinter')
dlg.adapt('zenity_bash')

How to install dependencies for available backends:

>>> print(dlg.install_instructions())
sudo apt install python3-tk zenity

class Dpowers.DialogAdaptor(main_info=None, *, group='default', _primary_name=False, **method_infos)
Subclass of Dpowers.Adaptor.

adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)
Choose the backend for this instance. See Adaptor.adapt().

date(selected=None, **kwargs)
selected_date must be of form (dd,mm,yyyy). returns the same format.

class Dpowers.DialogAdaptor.AdaptiveClass

A baseclass to create your own AdaptiveClasses. See Dpowers.AdaptiveClass.

2.6.6 hook (HookAdaptor)

Dpowers.hook

Default instance of HookAdaptor class.

How to import:

from Dpowers import hook

choose the default backend for your system:
hook.adapt()

alternatively, choose one of the following backends:
hook.adapt('evdev')
hook.adapt('pynput')

How to install dependencies for available backends:

>>> print(hook.install_instructions())
pip install -U pynput

class Dpowers.HookAdaptor(main_info=None, *, group='default', _primary_name=False, **method_infos)
Subclass of Dpowers.Adaptor.

18 Chapter 2. Requirements

Dpowers

adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)
Choose the backend for this instance. See Adaptor.adapt().

class Dpowers.HookAdaptor.AdaptiveClass

A baseclass to create your own AdaptiveClasses. See Dpowers.AdaptiveClass.

2.7 Adaptive Classes

class Dpowers.AdaptiveClass

adaptor

Class attribute. This is an instance of a subclass of Dpowers.Adaptor. It determines the backends avail-
able for this AdaptiveClass and is shared among all created instances. This Adaptor instance is used in-
ternally to access all backend specific functions. Usually you shouldn’t use this attribute, but prefer the
AdaptiveClass’ methods.

classmethod adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)
Changes the backend for all instances of this AdaptiveClass, including already created instances (unless
adapt_instance() was used).

For parameters see Dpowers.Adaptor.adapt().

adapt_instance(main_info=None, *, raise_error=True, require_backend=True, **method_infos)
Changes the backend for this instance only.

For parameters see Dpowers.Adaptor.adapt().

2.7.1 Win / Win.Search

Examples

• Click on a window to paste its properties to the clipboard

• Launch the browser and simultaneously redirect key presses

class Dpowers.Win(title_or_ID=None, wcls=None, *, pid=None, loc=None, at_least_one=False, limit=None,
visible=None)

Subclass of Dpowers.AdaptiveClass.

Associated Adaptor class: Dpowers.WindowAdaptor

How to import:

from Dpowers import Win

choose the default backend for your system:
Win.adapt()

alternatively, choose one of the following backends:
Win.adapt('xtools_bash')

How to install dependencies for available backends:

2.7. Adaptive Classes 19

Dpowers

>>> print(Win.install_instructions())
sudo apt install wmctrl xdotool

An object of this class represents one or more graphical windows of your operating system.

When a new instance of this class is created, a search is performed to find all existing windows matching the
given parameters. Each window is identified by a unique system-wide identification number (ID). The matching
IDs are saved in ascending order as a static list. Use the IDs() method to see them. All methods below will
operate on this list of initially found windows.

Two Win() objects are considered identical if their list of IDs() are identical.

classmethod adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)
Choose the backend for this class. See AdaptiveClass.adapt(). For parameters see Dpowers.
Adaptor.adapt().

__init__(title_or_ID=None, wcls=None, *, pid=None, loc=None, at_least_one=False, limit=None,
visible=None)

Parameters

• title_or_ID (str, int) –

– A string is interpreted as the title to search for. The string can be contained anywhere in
the window’s title to be considered a match.

– An integer is interpreted as a window ID. Specifying this directly will skip the search
and all other parameters are hence ignored.

• wcls (str) – Window class to search for. This must be an exact match.

• pid (int) – Process ID of the window to search for.

• loc (tuple) – Specify screen coordinates (x,*y*) for this parameter to retrieve the top-most
window at that location. Specifying this will ignore all other parameters.

• at_least_one (bool) – If set to True, check that at least one matching window has been
found.

• limit (int) – Maximum number of windows to include into the window object. If more
matching windows exist, only the ones with the lowest IDs will be included.

• visible (bool) – If set to True, only visible windows will be considered.

Raises
WindowNotFoundError – If at_least_one is True and no matching window was found.

In order to find the currently active (i.e. topmost) window, simply call this class without parameters:

active_window = Win()

Several different parameters can be passed at once to narrow down the search. A window must fullfill all
specified parameters to be a match:

dpowers_doc_win = Win('Dpowers documentation', 'Navigator.firefox')
searches for windows with
'Dpowers documentation' contained in title
AND
window class is equal to 'Navigator.firefox' (Firefox browser)

20 Chapter 2. Requirements

Dpowers

In place of passing a single value for the parameters ID, title, wcls or pid, it is possible to pass a list (or
tuple or set) of allowed values instead, which will search for a wider scope of windows:

dpowers_browser_win = Win('Dpowers documentation',
('Navigator.firefox','chromium-browser.Chromium-browser'))

searches for windows with
'Dpowers documentation' contained in title
AND
(window class is equal to 'Navigator.firefox'
OR window class is equal to 'chromium-browser.Chromium-browser')

In many cases it is desirable to make sure that exactly one matching window is found for each instance to
avoid confusion. In other cases it might be useful to operate on a group of windows simultaneously.

Note: If a window was initially found and closed in the meantime, its ID will still be in the internal list of
the Win() object. This can result in an Exception when trying to interact with a non-existent window ID.
The update() or remove_non_existing() methods can be used to avoid this problem.

update()

Re-perform the initial search for matching existing windows and update this window object’s internal ID
list. This removes non-existing windows and searches for new matches.

remove_non_existing()

Cleanse this window object’s internal ID list by removing those that do not exist anymore.

property num

Number (int) of windows found to match the given criteria. Equals zero if there was no match at all.

ID()

Returns the identification number (int) of this window if exactly one match was found. Returns None if no
match was found. Raises ValueError if there was more than one matching window.

IDs()

Returns a tuple of length num containing the IDs of all found windows.

title()

Returns the title (str) of this window if exactly one match was found. Returns None if no match was found.
Raises ValueError if there was more than one matching window.

titles()

Returns a tuple of length num containing the titles of all found windows. Use titles_gen() to create a
generator instead of a tuple.

wcls()

Returns the window class (str) of this window if exactly one match was found. Returns None if no match
was found. Raises ValueError if there was more than one matching window.

wclasses()

Returns a tuple of length num containing the window classes of all found windows. Use wclasses_gen()
to create a generator instead of a tuple.

pid()

Returns the process ID (int) of this window if exactly one match was found. Returns None if no match was
found. Raises ValueError if there was more than one matching window.

2.7. Adaptive Classes 21

Dpowers

pids()

Returns a tuple of length num containing the process IDs of all found windows. Use pids_gen() to create
a generator instead of a tuple.

classmethod screen_res()

Returns the screen resolution in pixels as a tuple (screen_width, screen_height).

width()

Returns the width in pixels (int) of this window if exactly one match was found. Returns None if no match
was found. Raises ValueError if there was more than one matching window.

widths()

Returns a tuple of length num containing the widths of all found windows. Use widths_gen() to create a
generator instead of a tuple.

height()

Returns the height in pixels (int) of this window if exactly one match was found. Returns None if no match
was found. Raises ValueError if there was more than one matching window.

heights()

Returns a tuple of length num containing the heights of all found windows. Use heights_gen() to create
a generator instead of a tuple.

geometry()

Returns the 4 border coordinates of this window if exactly one match was found. Returns None if no match
was found. Raises ValueError if there was more than one matching window.

The return value is a 4-element tuple containing the window’s border coordinates as int in pixels as follows:
(left, top, right, bottom) = (Xmin, Ymin, Xmax, Ymax).

geometries()

Returns a tuple of length num containing the geometries of all found windows. Use geometries_gen()
to create a generator instead of a tuple.

info()

Returns the 2-element tuple (title(), wcls()) of this window if exactly one match was found. Returns
None if no match was found. Raises ValueError if there was more than one matching window.

infos()

Returns a tuple of length num containing the info() tuples of all found windows. Use infos_gen() to
create a generator instead of a tuple.

all_info()

Returns the 5-element tuple (ID(), title(), wcls(), pid(), geometry()) of this window if exactly one
match was found. Returns None if no match was found. Raises ValueError if there was more than one
matching window.

all_infos()

Returns a tuple of length num containing the all_info() tuples of all found windows. Use
all_infos_gen() to create a generator instead of a tuple.

close(all=False)
Closes this window.

Parameters
all – If set True, apply this command to all found windows.

Raises
ValueError – If all is False (default) and more than one window matches.

22 Chapter 2. Requirements

Dpowers

kill(all=False)
Kill (force close) this window.

Parameters
all – If set True, apply this command to all found windows.

Raises
ValueError – If all is False (default) and more than one window matches.

minimize(all=False)
Minimize this window.

Parameters
all – If set True, apply this command to all found windows.

Raises
ValueError – If all is False (default) and more than one window matches.

maximize(all=False)
Maximize this window.

Parameters
all – If set True, apply this command to all found windows.

Raises
ValueError – If all is False (default) and more than one window matches.

max_left(all=False)
Maximize this window to the left side of the screen.

Parameters
all – If set True, apply this command to all found windows.

Raises
ValueError – If all is False (default) and more than one window matches.

max_right(all=False)
Maximize this window to the right side of the screen.

Parameters
all – If set True, apply this command to all found windows.

Raises
ValueError – If all is False (default) and more than one window matches.

move(x=-1, y=-1, width=-1, height=-1, all=False)
Move and resize this window. Specifying -1 for one of the coordinates will keep the current value (default).

Parameters

• x (int) – New coordinate of left border.

• y (int) – New cordinate of top border

• width (int) – New width of window.

• height (int) – New hight of window.

• all – If set True, apply this command to all found windows.

Raises
ValueError – If all is False (default) and more than one window matches.

2.7. Adaptive Classes 23

Dpowers

activate(all=False)
Activates this window.

Parameters
all – If set True, apply this command to all found windows.

Raises
ValueError – If all is False (default) and more than one window matches.

wait_active(timeout=5, pause_when_found=0.05, timestep=0.2)
Wait until the specified window is active. If several windows are matching, wait until any of them is active.

Parameters

• timeout (float) – Seconds to wait before returning anyway.

• pause_when_found (float) – Time to sleep after success.

• timestep (float) – Interval how often the condition is checked.

Returns

• The Win() object for the active window in case of success.

• False in case of a timeout.

wait_not_active(timeout=5, timestep=0.2)
Same as wait_active(), but reversed. It waits until the specified window(s) is (are) not active anymore.

Returns

• True in case of success.

• False in case of a timeout.

wait_exist(timeout=5, pause_when_found=0.05, timestep=0.2, min_wincount=1, max_wincount=None)
Waits until the number of matching windows is between min_wincount and max_wincount. By default, this
means at least one matching window must exist.

Parameters

• timeout (float) – Seconds to wait before returning anyway.

• pause_when_found (float) – Time to sleep after success.

• timestep (float) – Interval how often the condition is checked.

• min_wincount (int) – Minimum number of matching windows necessary to continue.

• max_wincount – Maximum number of matching windows to continue. If set to None
(default), there is no maximum.

Returns

• The Win() object containing all matching windows in case of success.

• False in case of a timeout.

wait_not_exist(timeout=5, timestep=0.2)
Wrapper for wait_exist() with min_wincount = max_wincount = 0.

Returns

• True in case of success.

• False in case of a timeout.

24 Chapter 2. Requirements

Dpowers

wait_num_change(num_change, timeout=5, pause_when_found=0.05, timestep=0.2)
Wrapper for wait_exist(). Waits until the number of currently matching windows has changed by
num_change (relative to the initial found number num).

Parameters
num_change (int) – A positive or negative integer.

Returns

• The Win() object of the newly found window(s) if num_change is positive.

• The Win() object of the closed window(s) if num_change is negative. (These do not exist
anymore.)

• False in case of a timeout.

Useful when opening a new window if other windows of the same class are already existing, see for example:
Launch the browser and simultaneously redirect key presses.

wait_exist_activate(timeout=5, timestep=0.2)
Wait until at least one matching window exists and activate it immediately.

Returns

• The Win() object for the found window.

• False in case of timeout or if activate failed.

class Dpowers.Win.Search

Subclass of Dpowers.windowpower.windowobjects.WindowSearch, using the same adaptor instance (and
thus the same backend) as Dpowers.Win.

2.7.2 Icon

Examples

• Display a tray icon with customized menu

class Dpowers.Icon

Subclass of Dpowers.AdaptiveClass.

Associated Adaptor class: Dpowers.IconAdaptor

How to import:

from Dpowers import Icon

choose the default backend for your system:
Icon.adapt()

alternatively, choose one of the following backends:
Icon.adapt('pystray')
Icon.adapt('yad_bash')

How to install dependencies for available backends:

2.7. Adaptive Classes 25

Dpowers

>>> print(Icon.install_instructions())
pip install -U pillow pystray
sudo apt install yad

classmethod adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)
Choose the backend for this class. See AdaptiveClass.adapt(). For parameters see Dpowers.
Adaptor.adapt().

menuitem(text=None, func=None)
Adds a new entry to the icon’s context menu.

Parameters

• text (str) – Text of the menu entry. If omitted func.__name__ will be used as text
(underscores are replaced by space).

• func – Function to execute when clicking this menu entry.

additem(func)
A decorator to apply menuitem() directly onto a function.

2.7.3 TriggerManager

Examples

• Define a key sequence to trigger a function

• Define a combined key / button sequence as trigger

class Dpowers.TriggerManager(timeout=60, buffer=4)
Subclass of Dpowers.AdaptiveClass.

Associated Adaptor class: Dpowers.HookAdaptor

How to import:

from Dpowers import TriggerManager

choose the default backend for your system:
TriggerManager.adapt()

alternatively, choose one of the following backends:
TriggerManager.adapt('evdev')
TriggerManager.adapt('pynput')

How to install dependencies for available backends:

>>> print(TriggerManager.install_instructions())
pip install -U pynput

classmethod adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)
Choose the backend for this class. See AdaptiveClass.adapt(). For parameters see Dpowers.
Adaptor.adapt().

26 Chapter 2. Requirements

Dpowers

2.7.4 KeyWaiter

Examples

• Launch the browser and simultaneously redirect key presses

class Dpowers.KeyWaiter(*args, eventmap=None, keys=True, buttons=False, press=True, release=False,
write_rls=True, join_events=False, **kwargs)

Subclass of Dpowers.AdaptiveClass.

Associated Adaptor class: Dpowers.HookAdaptor

How to import:

from Dpowers import KeyWaiter

choose the default backend for your system:
KeyWaiter.adapt()

alternatively, choose one of the following backends:
KeyWaiter.adapt('evdev')
KeyWaiter.adapt('pynput')

How to install dependencies for available backends:

>>> print(KeyWaiter.install_instructions())
pip install -U pynput

classmethod adapt(main_info=None, *, raise_error=True, require_backend=True, **method_infos)
Choose the backend for this class. See AdaptiveClass.adapt(). For parameters see Dpowers.
Adaptor.adapt().

2.7. Adaptive Classes 27

Dpowers

28 Chapter 2. Requirements

CHAPTER

THREE

INDICES AND TABLES

• genindex

29

Dpowers

30 Chapter 3. Indices and tables

INDEX

Symbols
__init__() (Dpowers.Adaptor method), 10
__init__() (Dpowers.Win method), 20

A
activate() (Dpowers.Win method), 23
adapt() (Dpowers.AdaptiveClass class method), 19
adapt() (Dpowers.Adaptor method), 10
adapt() (Dpowers.ClipboardAdaptor method), 16
adapt() (Dpowers.DialogAdaptor method), 18
adapt() (Dpowers.HookAdaptor method), 18
adapt() (Dpowers.Icon class method), 26
adapt() (Dpowers.KeyboardAdaptor method), 11
adapt() (Dpowers.KeyWaiter class method), 27
adapt() (Dpowers.MouseAdaptor method), 16
adapt() (Dpowers.NotificationAdaptor method), 17
adapt() (Dpowers.TriggerManager class method), 26
adapt() (Dpowers.Win class method), 20
adapt_instance() (Dpowers.AdaptiveClass method),

19
AdaptiveClass (class in Dpowers), 19
Adaptor (class in Dpowers), 10
adaptor (Dpowers.AdaptiveClass attribute), 19
additem() (Dpowers.Icon method), 26
all_info() (Dpowers.Win method), 22
all_infos() (Dpowers.Win method), 22

C
clip (in module Dpowers), 16
ClipboardAdaptor (class in Dpowers), 16
close() (Dpowers.Win method), 22
comb() (Dpowers.KeyboardAdaptor method), 13
custom_text_method (Dpowers.KeyboardAdaptor at-

tribute), 14

D
date() (Dpowers.DialogAdaptor method), 18
default_delay (Dpowers.KeyboardAdaptor attribute),

12
default_delay (Dpowers.MouseAdaptor attribute), 16
default_duration (Dpowers.KeyboardAdaptor at-

tribute), 12

default_duration (Dpowers.MouseAdaptor attribute),
16

DialogAdaptor (class in Dpowers), 18
dlg (in module Dpowers), 17
Dpowers.ClipboardAdaptor.AdaptiveClass (built-

in class), 17
Dpowers.DialogAdaptor.AdaptiveClass (built-in

class), 18
Dpowers.HookAdaptor.AdaptiveClass (built-in

class), 19
Dpowers.KeyboardAdaptor.AdaptiveClass (built-in

class), 15
Dpowers.MouseAdaptor.AdaptiveClass (built-in

class), 16
Dpowers.NotificationAdaptor.AdaptiveClass

(built-in class), 17
Dpowers.Win.Search (built-in class), 25

G
geometries() (Dpowers.Win method), 22
geometry() (Dpowers.Win method), 22
get() (Dpowers.ClipboardAdaptor method), 16

H
height() (Dpowers.Win method), 22
heights() (Dpowers.Win method), 22
hook (in module Dpowers), 18
HookAdaptor (class in Dpowers), 18

I
Icon (class in Dpowers), 25
ID() (Dpowers.Win method), 21
IDs() (Dpowers.Win method), 21
info() (Dpowers.Win method), 22
infos() (Dpowers.Win method), 22

K
key (Dpowers.KeyboardAdaptor property), 14
keyb (in module Dpowers), 11
KeyboardAdaptor (class in Dpowers), 11
KeyWaiter (class in Dpowers), 27
kill() (Dpowers.Win method), 23

31

Dpowers

L
layout (Dpowers.KeyboardAdaptor property), 14

M
max_left() (Dpowers.Win method), 23
max_right() (Dpowers.Win method), 23
maximize() (Dpowers.Win method), 23
menuitem() (Dpowers.Icon method), 26
minimize() (Dpowers.Win method), 23
mouse (in module Dpowers), 15
MouseAdaptor (class in Dpowers), 16
move() (Dpowers.Win method), 23

N
NotificationAdaptor (class in Dpowers), 17
ntfy (in module Dpowers), 17
num (Dpowers.Win property), 21

P
pid() (Dpowers.Win method), 21
pids() (Dpowers.Win method), 21
press() (Dpowers.KeyboardAdaptor method), 13

R
remove_non_existing() (Dpowers.Win method), 21
rls() (Dpowers.KeyboardAdaptor method), 13

S
screen_res() (Dpowers.Win class method), 22
send() (Dpowers.KeyboardAdaptor method), 12
set_layout() (Dpowers.KeyboardAdaptor method), 14

T
tap() (Dpowers.KeyboardAdaptor method), 13
text() (Dpowers.KeyboardAdaptor method), 14
title() (Dpowers.Win method), 21
titles() (Dpowers.Win method), 21
TriggerManager (class in Dpowers), 26

U
update() (Dpowers.Win method), 21

W
wait_active() (Dpowers.Win method), 24
wait_exist() (Dpowers.Win method), 24
wait_exist_activate() (Dpowers.Win method), 25
wait_not_active() (Dpowers.Win method), 24
wait_not_exist() (Dpowers.Win method), 24
wait_num_change() (Dpowers.Win method), 24
wclasses() (Dpowers.Win method), 21
wcls() (Dpowers.Win method), 21
width() (Dpowers.Win method), 22
widths() (Dpowers.Win method), 22
Win (class in Dpowers), 19

32 Index

	Introduction
	Requirements
	Installation and Dependencies
	Importing and Adapting
	Step 1: Import
	Step 2: Adapt
	Alternative: autoadapt

	Overview of adaptable objects
	Adaptors
	AdaptiveClasses

	Basic Examples
	Display a tray icon with customized menu
	Define a key sequence to trigger a function
	Define a combined key / button sequence as trigger

	Advanced Examples
	Click on a window to paste its properties to the clipboard
	Launch the browser and simultaneously redirect key presses

	Adaptors
	keyb (KeyboardAdaptor)
	mouse (MouseAdaptor)
	clip (ClipboardAdaptor)
	ntfy (NotificationAdaptor)
	dlg (DialogAdaptor)
	hook (HookAdaptor)

	Adaptive Classes
	Win / Win.Search
	Icon
	TriggerManager
	KeyWaiter

	Indices and tables
	Index

